Your activity: 98 p.v.
your limit has been reached. plz Donate us to allow your ip full access, Email: sshnevis@outlook.com

Betaxolol (systemic): Drug information

Betaxolol (systemic): Drug information
(For additional information see "Betaxolol (systemic): Patient drug information")

For abbreviations, symbols, and age group definitions used in Lexicomp (show table)
Pharmacologic Category
  • Antihypertensive;
  • Beta-Blocker, Beta-1 Selective
Dosing: Adult
Hypertension

Hypertension (alternative agent):

Note : Not recommended in the absence of specific comorbidities (eg, ischemic heart disease, arrhythmia) (ACC/AHA [Whelton 2018]).

Oral: Initial: 5 to 10 mg once daily; titrate as needed after 7 to 14 days based on patient response up to 20 mg once daily (ACC/AHA [Whelton 2018]; manufacturer's labeling).

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Dosing: Kidney Impairment: Adult

Severe impairment: Initial dose: 5 mg once daily; may increase every 2 weeks up to a maximum of 20 mg once daily

Hemodialysis: Initial dose: 5 mg once daily; may increase every 2 weeks up to a maximum of 20 mg once daily. Supplemental dose not required.

Dosing: Hepatic Impairment: Adult

Dosage adjustments are not routinely required.

Dosing: Older Adult

Refer to adult dosing.

Hypertension: Oral: Initial: 5 mg once daily

Dosage Forms: US

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Tablet, Oral, as hydrochloride:

Generic: 10 mg, 20 mg

Generic Equivalent Available: US

Yes

Administration: Adult

Oral: Absorption is not affected by food.

Use: Labeled Indications

Hypertension: Management of hypertension. Note: Beta-blockers are not recommended as first-line therapy (ACC/AHA [Whelton 2018]).

Medication Safety Issues
Sound-alike/look-alike issues:

Betaxolol may be confused with bethanechol, labetalol

Adverse Reactions

The following adverse drug reactions and incidences are derived from product labeling unless otherwise specified.

2% to 10%:

Cardiovascular: Bradycardia (6% to 8%; symptomatic bradycardia: ≤2%; dose-dependent), chest pain (2% to 7%), cold extremities (2%), palpitations (2%), edema (≤2%; similar to placebo)

Central nervous system: Fatigue (3% to 10%), insomnia (1% to 5%), lethargy (3%), paresthesia (2%)

Gastrointestinal: Nausea (2% to 6%), dyspepsia (4% to 5%), diarrhea (2%)

Hematologic & oncologic: Positive ANA titer (5%)

Neuromuscular & skeletal: Arthralgia (3% to 5%)

Respiratory: Dyspnea (2%), pharyngitis (2%)

<2%, postmarketing, and/or case reports: Abnormal dreams, abnormality in thinking, acidosis, alopecia, amnesia, anemia, angina pectoris, anorexia, arthropathy, ataxia, atrioventricular block, blepharitis, breast fibroadenosis, bronchitis, bronchospasm, cardiac arrhythmia, cardiac failure, cataract, cerebrovascular disease, conjunctivitis, constipation, cough, cystitis, deafness, decreased libido, depression, diabetes mellitus, diaphoresis, dysgeusia, dysphagia, dysuria, emotional lability, epistaxis, erythematous rash, exacerbation of psoriasis, fever, flushing, hallucination, hemophthalmos, hypercholesterolemia, hyperglycemia, hyperkalemia, hyperlipidemia, hypersensitivity reaction, hypertension, hypertrichosis, hyperuricemia, hypoglycemia, hypokalemia, hypotension, impotence, increased lactate dehydrogenase, increased serum ALT, increased serum AST, influenza, intermittent claudication, iritis, labyrinth disease, leukocytosis, lymphadenopathy, malaise, menstrual disease, muscle cramps, myocardial infarction, nervousness, neuralgia, neuropathy, numbness, oliguria, peripheral ischemia, Peyronie’s disease, pneumonia, prostatitis, proteinuria, pruritus, purpura, renal insufficiency, rhinitis, rigors, scotoma, sinusitis, skin rash, stupor, syncope, tendinopathy, thrombocytopenia, thrombophlebitis, thrombosis, tinnitus, tremor, twitching, visual disturbance, vomiting, weight gain, weight loss, xerostomia

Contraindications

Hypersensitivity to betaxolol or any component of the formulation; sinus bradycardia; heart block greater than first-degree (except in patients with a functioning artificial pacemaker); cardiogenic shock; uncompensated cardiac failure

Documentation of allergenic cross-reactivity for beta-blockers is limited. However, because of similarities in chemical structure and/or pharmacologic actions, the possibility of cross-sensitivity cannot be ruled out with certainty.

Warnings/Precautions

Concerns related to adverse events:

• Anaphylactic reactions: Use caution with history of severe anaphylaxis to allergens; patients taking beta-blockers may become more sensitive to repeated challenges. Treatment of anaphylaxis (eg, epinephrine) in patients taking beta-blockers may be ineffective or promote undesirable effects.

Disease-related concerns:

• Bronchospastic disease: In general, patients with bronchospastic disease should not receive beta-blockers; however, betaxolol, with B1 selectivity, may be used cautiously with the lowest possible dose (eg, 5 to 10 mg/day), availability of a bronchodilator, and close monitoring; if a dosage increase is indicated, administer in divided doses.

• Cerebrovascular insufficiency: Use with caution in patients with cerebrovascular insufficiency; hypotension and decreased heart rate may reduce cerebral blood flow.

• Conduction abnormality: Consider preexisting conditions such as sick sinus syndrome before initiating therapy.

• Diabetes: Use with caution in patients with diabetes mellitus; may potentiate and/or mask signs and symptoms of hypoglycemia.

• Heart failure (HF): Use with caution in patients with compensated heart failure and monitor for a worsening of the condition. There is limited data evaluating the efficacy of betaxolol in HF; use is not recommended (AHA/ACC/HFSA [Heidenreich 2022]; Figulla HR 2006).

• Myasthenia gravis: Use with caution in patients with myasthenia gravis; may potentiate myasthenia-related muscle weakness, including diplopia and ptosis.

• Peripheral vascular disease (PVD) and Raynaud disease: May precipitate or aggravate symptoms of arterial insufficiency in patients with PVD and Raynaud disease. Use with caution and monitor for progression of arterial obstruction.

• Pheochromocytoma (untreated): Adequate alpha-blockade is required prior to use of any beta-blocker.

• Prinzmetal variant angina: Beta-blockers without alpha1-adrenergic receptor blocking activity should be avoided in patients with Prinzmetal variant angina since unopposed alpha1-adrenergic receptors mediate coronary vasoconstriction and can worsen anginal symptoms (Mayer 1998).

• Psoriasis: Beta-blocker use has been associated with induction or exacerbation of psoriasis but cause and effect has not been firmly established.

• Renal impairment: Use with caution in patients with renal impairment; dosage adjustment required in severe impairment and in patients on dialysis.

• Thyroid disease: May mask signs of hyperthyroidism (eg, tachycardia). If hyperthyroidism is suspected, carefully manage and monitor; abrupt withdrawal may precipitate thyroid storm.

Special populations:

• Older adult: Bradycardia may be observed more frequently in elderly patients (>65 years of age); dosage reductions may be necessary.

Other warnings/precautions:

• Abrupt withdrawal: Beta-blocker therapy should not be withdrawn abruptly (particularly in patients with CAD), but gradually tapered to avoid acute tachycardia, hypertension, ischemia, and/or angina exacerbation. Severe exacerbation of angina, ventricular arrhythmias, and MI have been reported following abrupt withdrawal of beta-blocker therapy. Temporary but prompt resumption of beta-blocker therapy may be indicated with worsening of angina or acute coronary insufficiency.

• Major surgery: Chronic beta-blocker therapy should not be routinely withdrawn prior to major surgery.

Metabolism/Transport Effects

Substrate of CYP1A2 (minor), CYP2D6 (minor); Note: Assignment of Major/Minor substrate status based on clinically relevant drug interaction potential

Drug Interactions

Note: Interacting drugs may not be individually listed below if they are part of a group interaction (eg, individual drugs within “CYP3A4 Inducers [Strong]” are NOT listed). For a complete list of drug interactions by individual drug name and detailed management recommendations, use the Lexicomp drug interactions program by clicking on the “Launch drug interactions program” link above.

Acetylcholinesterase Inhibitors: May enhance the bradycardic effect of Beta-Blockers. Risk C: Monitor therapy

Alfuzosin: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Alpha1-Blockers: Beta-Blockers may enhance the orthostatic hypotensive effect of Alpha1-Blockers. The risk associated with ophthalmic products is probably less than systemic products. Risk C: Monitor therapy

Alpha2-Agonists: May enhance the AV-blocking effect of Beta-Blockers. Sinus node dysfunction may also be enhanced. Beta-Blockers may enhance the rebound hypertensive effect of Alpha2-Agonists. This effect can occur when the Alpha2-Agonist is abruptly withdrawn. Management: Closely monitor heart rate during treatment with a beta blocker and clonidine. Withdraw beta blockers several days before clonidine withdrawal when possible, and monitor blood pressure closely. Recommendations for other alpha2-agonists are unavailable. Risk D: Consider therapy modification

Amifostine: Blood Pressure Lowering Agents may enhance the hypotensive effect of Amifostine. Management: When used at chemotherapy doses, hold blood pressure lowering medications for 24 hours before amifostine administration. If blood pressure lowering therapy cannot be held, do not administer amifostine. Use caution with radiotherapy doses of amifostine. Risk D: Consider therapy modification

Amiodarone: May enhance the bradycardic effect of Beta-Blockers. Possibly to the point of cardiac arrest. Amiodarone may increase the serum concentration of Beta-Blockers. Risk C: Monitor therapy

Amphetamines: May diminish the antihypertensive effect of Antihypertensive Agents. Risk C: Monitor therapy

Antidiabetic Agents: Beta-Blockers (Beta1 Selective) may enhance the hypoglycemic effect of Antidiabetic Agents. Risk C: Monitor therapy

Antipsychotic Agents (Phenothiazines): May enhance the hypotensive effect of Beta-Blockers. Beta-Blockers may decrease the metabolism of Antipsychotic Agents (Phenothiazines). Antipsychotic Agents (Phenothiazines) may decrease the metabolism of Beta-Blockers. Risk C: Monitor therapy

Antipsychotic Agents (Second Generation [Atypical]): Blood Pressure Lowering Agents may enhance the hypotensive effect of Antipsychotic Agents (Second Generation [Atypical]). Risk C: Monitor therapy

Barbiturates: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Benperidol: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Beta2-Agonists: Beta-Blockers (Beta1 Selective) may diminish the bronchodilatory effect of Beta2-Agonists. Of particular concern with nonselective beta-blockers or higher doses of the beta1 selective beta-blockers. Risk C: Monitor therapy

Bradycardia-Causing Agents: May enhance the bradycardic effect of other Bradycardia-Causing Agents. Risk C: Monitor therapy

Brigatinib: May diminish the antihypertensive effect of Antihypertensive Agents. Brigatinib may enhance the bradycardic effect of Antihypertensive Agents. Risk C: Monitor therapy

Brimonidine (Topical): May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Bromperidol: May diminish the hypotensive effect of Blood Pressure Lowering Agents. Blood Pressure Lowering Agents may enhance the hypotensive effect of Bromperidol. Risk X: Avoid combination

Bupivacaine: Beta-Blockers may increase the serum concentration of Bupivacaine. Risk C: Monitor therapy

Cannabis: Beta-Blockers may enhance the adverse/toxic effect of Cannabis. Specifically, the risk of hypoglycemia may be increased. Risk C: Monitor therapy

Ceritinib: Bradycardia-Causing Agents may enhance the bradycardic effect of Ceritinib. Management: If this combination cannot be avoided, monitor patients for evidence of symptomatic bradycardia, and closely monitor blood pressure and heart rate during therapy. Risk D: Consider therapy modification

Cholinergic Agonists: Beta-Blockers may enhance the adverse/toxic effect of Cholinergic Agonists. Of particular concern are the potential for cardiac conduction abnormalities and bronchoconstriction. Risk C: Monitor therapy

Dexmethylphenidate: May diminish the therapeutic effect of Antihypertensive Agents. Risk C: Monitor therapy

Diazoxide: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Dipyridamole: May enhance the bradycardic effect of Beta-Blockers. Risk C: Monitor therapy

Disopyramide: May enhance the bradycardic effect of Beta-Blockers. Beta-Blockers may enhance the negative inotropic effect of Disopyramide. Risk C: Monitor therapy

DOBUTamine: Beta-Blockers may diminish the therapeutic effect of DOBUTamine. Risk C: Monitor therapy

Dronedarone: May enhance the bradycardic effect of Beta-Blockers. Dronedarone may increase the serum concentration of Beta-Blockers. This likely applies only to those agents that are metabolized by CYP2D6. Management: Use lower initial beta-blocker doses; adequate tolerance of the combination, based on ECG findings, should be confirmed prior to any increase in beta-blocker dose. Increase monitoring for clinical response and adverse effects. Risk D: Consider therapy modification

DULoxetine: Blood Pressure Lowering Agents may enhance the hypotensive effect of DULoxetine. Risk C: Monitor therapy

EPHEDrine (Systemic): Beta-Blockers may diminish the therapeutic effect of EPHEDrine (Systemic). Risk C: Monitor therapy

EPINEPHrine (Nasal): Beta-Blockers (Beta1 Selective) may diminish the therapeutic effect of EPINEPHrine (Nasal). Risk C: Monitor therapy

EPINEPHrine (Oral Inhalation): Beta-Blockers (Beta1 Selective) may diminish the therapeutic effect of EPINEPHrine (Oral Inhalation). Risk C: Monitor therapy

Epinephrine (Racemic): Beta-Blockers (Beta1 Selective) may diminish the therapeutic effect of Epinephrine (Racemic). Risk C: Monitor therapy

EPINEPHrine (Systemic): Beta-Blockers (Beta1 Selective) may diminish the therapeutic effect of EPINEPHrine (Systemic). Risk C: Monitor therapy

Ergot Derivatives (Vasoconstrictive CYP3A4 Substrates): Beta-Blockers may enhance the vasoconstricting effect of Ergot Derivatives (Vasoconstrictive CYP3A4 Substrates). Risk C: Monitor therapy

Etilefrine: May enhance the bradycardic effect of Beta-Blockers. Beta-Blockers may diminish the therapeutic effect of Etilefrine. Risk C: Monitor therapy

Etofylline: Beta-Blockers may diminish the therapeutic effect of Etofylline. Risk X: Avoid combination

Fexinidazole: Bradycardia-Causing Agents may enhance the arrhythmogenic effect of Fexinidazole. Risk X: Avoid combination

Fingolimod: Bradycardia-Causing Agents may enhance the bradycardic effect of Fingolimod. Management: Consult with the prescriber of any bradycardia-causing agent to see if the agent could be switched to an agent that does not cause bradycardia prior to initiating fingolimod. If combined, perform continuous ECG monitoring after the first fingolimod dose. Risk D: Consider therapy modification

Flunarizine: May enhance the therapeutic effect of Antihypertensive Agents. Risk C: Monitor therapy

Grass Pollen Allergen Extract (5 Grass Extract): Beta-Blockers may enhance the adverse/toxic effect of Grass Pollen Allergen Extract (5 Grass Extract). More specifically, Beta-Blockers may inhibit the ability to effectively treat severe allergic reactions to Grass Pollen Allergen Extract (5 Grass Extract) with epinephrine. Some other effects of epinephrine may be unaffected or even enhanced (e.g., vasoconstriction) during treatment with Beta-Blockers. Management: Consider alternatives to either grass pollen allergen extract (5 grass extract) or beta-blockers in patients with indications for both agents. Canadian product labeling specifically lists this combination as contraindicated. Risk D: Consider therapy modification

Herbal Products with Blood Pressure Increasing Effects: May diminish the antihypertensive effect of Antihypertensive Agents. Risk C: Monitor therapy

Herbal Products with Blood Pressure Lowering Effects: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Hypotension-Associated Agents: Blood Pressure Lowering Agents may enhance the hypotensive effect of Hypotension-Associated Agents. Risk C: Monitor therapy

Isoproterenol: Beta-Blockers may diminish the therapeutic effect of Isoproterenol. Risk C: Monitor therapy

Ivabradine: Bradycardia-Causing Agents may enhance the bradycardic effect of Ivabradine. Risk C: Monitor therapy

Lacosamide: Bradycardia-Causing Agents may enhance the AV-blocking effect of Lacosamide. Risk C: Monitor therapy

Levodopa-Containing Products: Blood Pressure Lowering Agents may enhance the hypotensive effect of Levodopa-Containing Products. Risk C: Monitor therapy

Lidocaine (Systemic): Beta-Blockers may increase the serum concentration of Lidocaine (Systemic). Risk C: Monitor therapy

Loop Diuretics: May enhance the hypotensive effect of Antihypertensive Agents. Risk C: Monitor therapy

Lormetazepam: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Mavacamten: Beta-Blockers may enhance the adverse/toxic effect of Mavacamten. Specifically, negative inotropic effects may be increased. Risk C: Monitor therapy

Mepivacaine: Beta-Blockers may increase the serum concentration of Mepivacaine. Risk C: Monitor therapy

Methacholine: Beta-Blockers may enhance the adverse/toxic effect of Methacholine. Risk C: Monitor therapy

Methoxyflurane: May enhance the hypotensive effect of Beta-Blockers. Risk C: Monitor therapy

Methylphenidate: May diminish the antihypertensive effect of Antihypertensive Agents. Risk C: Monitor therapy

Midodrine: May enhance the bradycardic effect of Bradycardia-Causing Agents. Risk C: Monitor therapy

Mivacurium: Beta-Blockers may enhance the therapeutic effect of Mivacurium. Risk C: Monitor therapy

Molsidomine: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Naftopidil: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Nicergoline: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Nicorandil: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

NIFEdipine: May enhance the hypotensive effect of Beta-Blockers. NIFEdipine may enhance the negative inotropic effect of Beta-Blockers. Risk C: Monitor therapy

Nitroprusside: Blood Pressure Lowering Agents may enhance the hypotensive effect of Nitroprusside. Risk C: Monitor therapy

Nonsteroidal Anti-Inflammatory Agents: May diminish the antihypertensive effect of Beta-Blockers. Risk C: Monitor therapy

Nonsteroidal Anti-Inflammatory Agents (Topical): May diminish the therapeutic effect of Beta-Blockers. Risk C: Monitor therapy

Obinutuzumab: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Management: Consider temporarily withholding blood pressure lowering medications beginning 12 hours prior to obinutuzumab infusion and continuing until 1 hour after the end of the infusion. Risk D: Consider therapy modification

Ozanimod: May enhance the bradycardic effect of Bradycardia-Causing Agents. Risk C: Monitor therapy

Pentoxifylline: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Pholcodine: Blood Pressure Lowering Agents may enhance the hypotensive effect of Pholcodine. Risk C: Monitor therapy

Phosphodiesterase 5 Inhibitors: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Ponesimod: Bradycardia-Causing Agents may enhance the bradycardic effect of Ponesimod. Management: Avoid coadministration of ponesimod with drugs that may cause bradycardia when possible. If combined, monitor heart rate closely and consider obtaining a cardiology consult. Do not initiate ponesimod in patients on beta-blockers if HR is less than 55 bpm. Risk D: Consider therapy modification

Prostacyclin Analogues: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Quinagolide: May enhance the hypotensive effect of Blood Pressure Lowering Agents. Risk C: Monitor therapy

Reserpine: May enhance the hypotensive effect of Beta-Blockers. Risk C: Monitor therapy

Rivastigmine: May enhance the bradycardic effect of Beta-Blockers. Risk X: Avoid combination

Siponimod: Bradycardia-Causing Agents may enhance the bradycardic effect of Siponimod. Management: Avoid coadministration of siponimod with drugs that may cause bradycardia. If combined, consider obtaining a cardiology consult regarding patient monitoring. Risk D: Consider therapy modification

Succinylcholine: Beta-Blockers may enhance the neuromuscular-blocking effect of Succinylcholine. Risk C: Monitor therapy

Sulfonylureas: Beta-Blockers may enhance the hypoglycemic effect of Sulfonylureas. Cardioselective beta-blockers (eg, acebutolol, atenolol, metoprolol, and penbutolol) may be safer than nonselective beta-blockers. All beta-blockers appear to mask tachycardia as an initial symptom of hypoglycemia. Ophthalmic beta-blockers are probably associated with lower risk than systemic agents. Risk C: Monitor therapy

Tasimelteon: Beta-Blockers may diminish the therapeutic effect of Tasimelteon. Management: Consider avoiding nighttime administration of beta-blockers during tasimelteon therapy due to the potential for reduced tasimelteon efficacy. Risk D: Consider therapy modification

Theophylline Derivatives: Beta-Blockers (Beta1 Selective) may diminish the bronchodilatory effect of Theophylline Derivatives. Risk C: Monitor therapy

Tofacitinib: May enhance the bradycardic effect of Bradycardia-Causing Agents. Risk C: Monitor therapy

White Birch Allergen Extract: Beta-Blockers may enhance the adverse/toxic effect of White Birch Allergen Extract. Specifically, beta-blockers may reduce the effectiveness of beta-agonists that may be required to treat systemic reactions to white birch allergen extract. Risk X: Avoid combination

Pregnancy Considerations

Betaxolol crosses the placenta (Morselli 1990).

Following maternal use of betaxolol, the beta-blocker effects may persist in the neonate for several days after birth. The risk of cardiac and pulmonary complications is increased in the neonate. Bradycardia, hypoglycemia, and respiratory distress have been reported and monitoring of the neonate for 3 to 5 days after birth is recommended.

Chronic maternal hypertension is also associated with adverse events in the fetus/infant. Chronic maternal hypertension may increase the risk of birth defects, low birth weight, premature delivery, stillbirth, and neonatal death. Actual fetal/neonatal risks may be related to duration and severity of maternal hypertension. Untreated chronic hypertension may also increase the risks of adverse maternal outcomes, including gestational diabetes, preeclampsia, delivery complications, stroke, and myocardial infarction (ACOG 203 2019).

The maternal half-life and serum concentration of betaxolol immediately postpartum are not significantly different than what is observed in nonpregnant women (Boutroy 1990; Morselli 1990). When treatment of chronic hypertension in pregnancy is indicated, agents other than betaxolol are preferred (ACOG 203 2019; ESC [Regitz-Zagrosek 2018]; Magee 2014). Females with preexisting hypertension may continue their medication during pregnancy unless contraindications exist (ESC [Regitz-Zagrosek 2018]).

Breastfeeding Considerations

Betaxolol is present in breast milk in amounts that may have a pharmacologic effect in the breastfeeding infant.

The manufacturer recommends that caution be exercised when administering betaxolol to breastfeeding women. Use of a beta-blocker other than betaxolol may be preferred in a breastfeeding female (Anderson 2017; Ito 2000).

Monitoring Parameters

Blood pressure, pulse; baseline renal function

Hypertension: The 2017 Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults (ACC/AHA [Whelton 2018]):

Confirmed hypertension and known CVD or 10-year ASCVD risk ≥10%: Target blood pressure <130/80 mm Hg is recommended.

Confirmed hypertension without markers of increased ASCVD risk: Target blood pressure <130/80 mm Hg may be reasonable.

Mechanism of Action

Competitively blocks beta1-receptors, with little or no effect on beta2-receptors

Pharmacokinetics

Onset of action: 1 to 1.5 hours

Absorption: ~100%

Metabolism: Hepatic to multiple metabolites

Protein binding: ~50%

Bioavailability: 89%

Half-life elimination: 14 to 22 hours; prolonged in hepatic disease and/or chronic renal failure. In patients with chronic renal failure undergoing dialysis, the half-life and AUC are approximately doubled.

Time to peak: 1.5 to 6 hours

Excretion: Urine (>80%, as unchanged drug [15%] and inactive metabolites)

Pharmacokinetics: Additional Considerations

Older adult: Elimination may be decreased.

Pricing: US

Tablets (Betaxolol HCl Oral)

10 mg (per each): $1.23 - $1.28

20 mg (per each): $1.86 - $2.67

Disclaimer: A representative AWP (Average Wholesale Price) price or price range is provided as reference price only. A range is provided when more than one manufacturer's AWP price is available and uses the low and high price reported by the manufacturers to determine the range. The pricing data should be used for benchmarking purposes only, and as such should not be used alone to set or adjudicate any prices for reimbursement or purchasing functions or considered to be an exact price for a single product and/or manufacturer. Medi-Span expressly disclaims all warranties of any kind or nature, whether express or implied, and assumes no liability with respect to accuracy of price or price range data published in its solutions. In no event shall Medi-Span be liable for special, indirect, incidental, or consequential damages arising from use of price or price range data. Pricing data is updated monthly.

Brand Names: International
  • Beof (PY, UY);
  • Bertocil (PT);
  • Betac (BG, JO, KR, MY, PH, RO, SG, TR, TW);
  • Betakor (UA);
  • Betasel (AR);
  • Betasel S (AR);
  • Betaxen (PK);
  • Betaxol (VE);
  • Betoptima (DE, ID);
  • Betoquin (AU);
  • Bexolo (TW);
  • Daberol (KR);
  • Kerlon (FI, IT, NL);
  • Kerlone (AT, CN, DE, FR, GR, JO, KR, KW, LB, MY, PY, QA, SA, TW, VN);
  • Lokren (CZ, HN, PL, RU, SK, UA);
  • Optibet (ID);
  • Optipres (IN);
  • Presmin (BR);
  • Vistagan (PK)


For country code abbreviations (show table)
  1. American College of Obstetricians and Gynecologists (ACOG). ACOG practice bulletin no. 203: chronic hypertension in pregnancy. Obstet Gynecol. 2019;133(1):e26-e50. [PubMed 30575676]
  2. Amsterdam EA, Wenger NK, Brindis RG, et al; American College of Cardiology; American Heart Association Task Force on Practice Guidelines; Society for Cardiovascular Angiography and Interventions; Society of Thoracic Surgeons; American Association for Clinical Chemistry. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines [published correction appears in J Am Coll Cardiol. 2014;64(24):2713-2714]. J Am Coll Cardiol. 2014;64(24):e139-e228. doi: 10.1016/j.jacc.2014.09.017. [PubMed 25260718]
  3. Anderson PO. Choosing medication alternatives during breastfeeding, avoiding alternative facts. Breastfeed Med. 2017;12(6):328-330. [PubMed 28650212]
  4. Aronoff GR, Bennett WM, Berns JS, et al, Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children, 5th ed. Philadelphia, PA: American College of Physicians; 2007.
  5. Betaxolol tablet [prescribing information]. Newtown, PA: KVK Tech Inc; December 2017.
  6. Boutroy MJ, Morselli PL, Bianchetti G, et al, "Betaxolol: A Pilot Study of Its Pharmacological and Therapeutic Properties in Pregnancy," Eur J Clin Pharmacol, 1990, 38(6):535-9. [PubMed 1973651]
  7. Brauchli YB, Jick SS, Curtin F, et al, “Association Between Beta-Blockers, Other Antihypertensive Drugs and Psoriasis: Population-Based Case-Control Study,” Br J Dermatol, 2008, 158(6):1299-307. [PubMed 18410416]
  8. Dahlof B, Devereux RB, Kjeldsen SE, et al; Life Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359(9311):995-1003. [PubMed 11937178]
  9. Figulla HR, Krzeminska-Pakula M, Wrabec K, Chochola J,et al. Betaxolol is equivalent to carvedilol in patients with heart failure NYHA II or III: result of a randomized multicenter trial (BETACAR Trial). Int J Cardiol. 2006;113(2):153-160. doi: 10.1016/j.ijcard.2005.06.067. [PubMed 16157399]
  10. Fihn SD, Gardin JM, Abrams J, et al, “2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons,” Circulation, 2012, 126(25):3097-137. [PubMed 23166211]
  11. Funder JW, Carey RM, Mantero F, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101(5):1889-1916. doi: 10.1210/jc.2015-4061. [PubMed 26934393]
  12. Glasser SP, Friedman R, Talibi T, Smith LK, Weir EK. Safety and compatibility of betaxolol hydrochloride combined with diltiazem or nifedipine therapy in stable angina pectoris. Am J Cardiol. 1994;73(4):213-218. [PubMed 8296748 ]
  13. Go AS, Bauman M, King SM, et al. An effective approach to high blood pressure control: a science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention [published online November 15, 2013]. Hypertension. [PubMed 24243703]
  14. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2022;145(18):e895-e1032. doi:10.1161/CIR.0000000000001063 [PubMed 35363499]
  15. Hillis LD, Smith PK, Anderson JL, et al. 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124(23):e652-735. Erratum in Circulation. 2011;124(25):e957. [PubMed 22064599]
  16. Iliuta L, Christodorescu R, Filpescu D, Moldovan H, Radulescu B, Vasile R. Prevention of perioperative atrial fibrillation with betablockers in coronary surgery: betaxolol versus metoprolol. Interact Cardiovasc Thorac Surg. 2009;9(1):89-93. [PubMed 19372098 ]
  17. Ito S. Drug therapy for breast-feeding women. N Engl J Med. 2000;343(2):118-126. [PubMed 10891521]
  18. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507-520. [PubMed 24352797]
  19. January CT, Wann LS, Alpert JS, et al; ACC/AHA Task Force Members. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130(23):e199-e267. doi: 10.1161/CIR.0000000000000041. [PubMed 24682347]
  20. Juul AB, Wetterslev J, Gluud C, et al, “Effect of Perioperative Beta Blockade in Patients With Diabetes Undergoing Major Non-Cardiac Surgery: Randomized Placebo Controlled, Blinded Multicentre Trial. DIPOM Trial Group,” BMJ, 2006, 332(7556):1482. [PubMed 16793810]
  21. Kardas P. Compliance, clinical outcome, and quality of life of patients with stable angina pectoris receiving once-daily betaxolol versus twice daily metoprolol: a randomized controlled trial. Vasc Health Risk Manag. 2007;3(2):235-242. [PubMed 17580734 ]
  22. Koh KK, Kwon KS, Park HB, et al. Efficacy and safety of digoxin alone and in combination with low-dose diltiazem or betaxolol to control ventricular rate in chronic atrial fibrillation. Am J Cardiol. 1995;75(1):88-90. [PubMed 7801876]
  23. Lang DM, “Anaphylactoid and Anaphylactic Reactions. Hazards of Beta-Blockers,” Drug Saf, 1995, 12(5):299-304. [PubMed 7669259]
  24. Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P, Canadian Hypertensive Disorders of Pregnancy Working Group. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: executive summary. J Obstet Gynaecol Can. 2014;36(5):416-441. [PubMed 24927294]
  25. Mayer S, Hillis LD. Prinzmetal's variant angina. Clin Cardiol. 1998;21(4):243-246. [PubMed 9562933]
  26. Morselli PL, Boutroy MJ, Bianchetti G, et al, "Placental Transfer and Perinatal Pharmacokinetics of Betaxolol," Eur J Clin Pharmacol, 1990, 38(5):477-83. [PubMed 2379532]
  27. Nishimura RA, Otto CM, Bonow RO, et al, 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(23):2440-92. doi: 10.1161/CIR.0000000000000029. [PubMed 24589852]
  28. O'Gara PT, Kushner FG, Ascheim DD, et al; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines [published correction appears in Circulation. 2013;128(25):e481]. Circulation. 2013;127(4):e362-e425. doi: 10.1161/CIR.0b013e3182742cf6. [PubMed 23247304]
  29. Redelmeier D, Scales D, and Kopp A, "Beta Blockers for Elective Surgery in Elderly Patients: Population Based, Retrospective Cohort Study," BMJ, 2005, 331(7522):932. [PubMed 16210252]
  30. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165-3241. [PubMed 30165544]
  31. Rosendorff C, Lackland DT, Allison M, et al; American Heart Association; American College of Cardiology; and American Society of Hypertension. Treatment of hypertension in patients with coronary artery disease: A scientific statement from the American Heart Association, American College of Cardiology, and American Society of Hypertension. J Am Soc Hypertens. 2015;9(6):453-498. [PubMed 25840695]
  32. Schön MP and Boehncke WH, “Psoriasis,” N Eng J Med, 2005, 352(18):1899-1912. [PubMed 15872205]
  33. Smith SC Jr, Benjamin EJ, Bonow RO, et al, “AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients With Coronary and Other Atherosclerotic Vascular Disease: 2011 Update: A Guideline From the American Heart Association and American College of Cardiology Foundation,” Circulation, 2011, 124(22):2458-73. [PubMed 22052934]
  34. Weber MA, Schiffrin EL, White WB, et al, Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. J Clin Hypertens (Greenwich). 2014;16(1):14-26. [PubMed 24341872]
  35. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension. 2018;71(6):e13-e115. doi:10.1161/HYP.0000000000000065 [PubMed 29133356]
  36. Wong DG, Spence JD, Lamki L, et al, “Effect of Nonsteroidal Anti-inflammatory Drugs on Control of Hypertension of Beta-Blockers and Diuretics,” Lancet, 1986, 1(8488):997-1001.
  37. UK Prospective Diabetes Study Group, “Efficacy of Atenolol and Captopril in Reducing Risk of Macrovascular and Microvascular Complications in Type 2 Diabetes: UKPDS 39,” BMJ, 1998, 317(7160):713-20. [PubMed 9732338]
  38. Yang H, Raymer K, Butler R, et al, “The Effects of Perioperative Beta-Blockade: Results of the Metoprolol After Vascular Surgery (MaVS) Study, a Randomized Controlled Trial,” Am Hear J, 2006, 152(5):983-90. [PubMed 17070177]
Topic 8976 Version 280.0